Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Qing-Ling Ni,^a Yan-Fang Liao,^a Xiu-Jian Wang,^a* Xian-Shu Bi^a and Xiang-Gao Meng^b

^aSchool of Chemistry and Chemical Engineering, Guangxi Normal University, Guilin 541004, People's Republic of China, and ^bCollege of Chemistry, Huazhong Normal University, Wuhan 430079, People's Republic of China

Correspondence e-mail: wang1_xj@yahoo.com.cn

Key indicators

Single-crystal X-ray study T = 292 KMean σ (C–C) = 0.007 Å R factor = 0.078 wR factor = 0.251 Data-to-parameter ratio = 19.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

N,*N*'-Bis[(diphenylphosphinoyl)methyl]-1,4-phenylenediamine

The molecule of the title compound, $C_{32}H_{30}N_2O_2P_2$, an oxidative derivative of N,N'-bis[(diphenylphosphino)methyl]-1,4-phenylenediamine, occupies a special position on an inversion center. The crystal structure contains $N-H\cdots O=P$ hydrogen bonds, connecting the molecules to form an infinite chain along [100].

Comment

In our studies of the coordination chemistry of diphosphines (Zhang *et al.*, 2002; Song *et al.*, 2002), we have focused our attention on the preparation of functionalized phosphines. In this paper, we present an X-ray crystallographic analysis of the title compound, (I).

Compound (I) is obtained when N,N'-bis[(diphenylphosphino)methyl]-1,4-phenylenediamine (Durran *et al.*, 2000) is mixed with NiCl₂·2H₂O in air, the oxidation state of the P atom being converted from III to V. The structure of (I) as determined by X-ray crystallography shows that the asymmetric unit consists of one half-molecule. The molecule (Fig. 1) occupies a special position of $\overline{1}$ site symmetry. In (I), the tertiary phosphine oxide has a distorted tetrahedral geometry with a P=O bond length of 1.483 (3) Å, which is consistent with appreciable double-bond character (Coles *et al.*, 2001).

The primary structural feature in the solid state is that supramolecular aggregation of (I) involves only intermolecular N-H···O=P hydrogen bonds (Table 2; Song *et al.*, 2000). Atom N acts as a hydrogen bond donor to O=P of an adjacent molecule (Fig. 2). The molecules are centrosymmetrically associated *via* a pair of N-H···O=P hydrogen bonds and propagation of these hydrogen bonds generates a chain running parallel to the [100] direction. This hydrogen-bonded structure may be regarded as a molecular ladder. There are neither hydrogen bonds nor aromatic π - π stacking interactions between adjacent chains, so the supramolecular structure is defined by the direction-specific interactions.

Experimental

A solution of NiCl₂·2H₂O (0.082 g, 0.50 mmol) in 15 ml of CH₃OH was added to CH₂Cl₂ (10 ml) containing N,N'-bis[(diphenyl-phosphino)methyl]-1,4-phenylenediamine (0.252 g, 0.5 mmol) and

Received 26 April 2006 Accepted 22 May 2006

Acta Cryst. (2006). E62, o2495–o2496

© 2006 International Union of Crystallography

All rights reserved

Figure 1

The molecular structure of (I), showing the atomic labeling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as spheres of arbitrary radii. Unlabeled atoms are related to labeled atoms by (1 - x, 2 - y, -z).

the solution was stirred at room temperature for 4 h. The filtrate was layered with acetone (15 ml). Brown crystals of the title compound suitable for X-ray diffraction analysis were obtained within a week.

Crystal data

$C_{32}H_{30}N_2O_2P_2$	Z = 2
$M_r = 536.52$	$D_x = 1.286 \text{ Mg m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 6.0688 (7) Å	$\mu = 0.19 \text{ mm}^{-1}$
b = 11.0033 (13) Å	T = 292 (2) K
c = 20.759 (2) Å	Prism, brown
$\beta = 91.284 \ (2)^{\circ}$	$0.30 \times 0.20 \times 0.10$ mm
V = 1385.9 (3) Å ³	
Data collection	

Data collection

Bruker SMART CCD area-detector	9412 measured reflections
diffractometer	3301 independent reflections
ω scans	2043 reflections with $I > 2\sigma(I)$
Absorption correction: multi-scan	$R_{\rm int} = 0.072$
(SADABS; Bruker, 1998)	$\theta_{\rm max} = 28.3^{\circ}$
$T_{\min} = 0.956, T_{\max} = 0.981$	

Refinement

Refinement on F^2	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.078$	$w = 1/[\sigma^2(F_o^2) + (0.1492P)^2]$
$wR(F^2) = 0.251$	where $P = (F_0^2 + 2F_c^2)/3$
S = 0.99	$(\Delta/\sigma)_{\rm max} = 0.004$
3301 reflections	$\Delta \rho_{\rm max} = 0.62 \ {\rm e} \ {\rm \AA}^{-3}$
172 parameters	$\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$

Table 1

			0	
Selected	geometric	parameters ((Å, °).

P1-O1	1.483 (3)	P1-C13	1.817 (4)
P1-C1	1.791 (4)	N1-C14	1.401 (5)
P1-C7	1.804 (4)	N1-C13	1.446 (5)
O1-P1-C1	112.67 (19)	C1-P1-C13	106.49 (19)
O1-P1-C7	110.9 (2)	C7-P1-C13	103.22 (19)
C1-P1-C7	109.06 (19)	C14-N1-C13	122.1 (3)
O1-P1-C13	113.96 (18)		

Figure 2

One-dimensional chain propagated by $N-H\cdots OP$ hydrogen bonding (dashed lines). H atoms have been omitted.

Table 2

H	ĺyd	lrogen-	bond	geometry	(A	۹, ۲	°))
---	-----	---------	------	----------	----	------	----	---

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1A\cdotsO1^{i}$	0.86	2.15	2.922 (4)	151

Symmetry code: (i) x + 1, y, z.

H atoms were observed in difference Fourier maps, but were placed in idealized positions and refined as riding on their parent atoms [C-H = 0.93–0.97 Å, N-H = 0.86 Å and $U_{iso}(H) = 1.2U_{eq}(C,N)$].

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXTL*.

This work was sponsored by the NSF of China (20463001) and the NSF of Guangxi province (0447031).

References

- Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Coles, S. J., Durran, S. E., Hursthouse, M. B., Slawin, A. M. Z. & Smith, M. B. (2001). *New J. Chem.* **25**, 416–422.
- Durran, S. E., Smith, M. B., Slawin, A. M. Z. & Steed, J. W. (2000). J. Chem. Soc. Dalton Trans. pp. 2771–2778.
- Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL97. University of Göttingen, Germany.
- Song, H. B., Wang, Q. M., Zhang, Z. Z. & Mak, T. C. W. (2000). J. Organomet. Chem. 605, 15–21.
- Song, H. B., Zhang, Z. Z. & Mak, T. C. W. (2002). J. Chem. Soc. Dalton Trans. pp. 1336–1343.
- Zhang, Q., Aucott, S. M., Slawin, A. M. Z. & Woollins, J. D. (2002). Eur. J. Inorg. Chem. pp. 1635–1646.